

1. Understanding the four determining issues regarding invasive and native species

When faced with the decision to restore river connectivity or to maintain a barrier causing river fragmentation, water managers need to consider and understand four determining issues regarding invasive and native species in their river (Fausch et al. (2009)):

1. Location in the river

First, the degree of threat to the native species targeted for conservation is paramount. If the **state of conservation of native species** is very vulnerable to a high risk of invasion, there are two options depending on the stretch of river they occupy: if native species are upstream, the a priori option would be to choose isolation or to maintain the obstacle. On the other hand, if the threatened native species are downstream, the best option is to remove the dam so that native species can recolonize upstream sections (for example, in the cases of eel and salmon).

2. Adaptation to lentic or lotic water

The second factor is the adaptation of invasive species to lentic or lotic water. In the case of the presence of invasive alien species adapted to slow waters, which carry out their life cycle in the reservoir's own body of water or in the downstream regulated flows, the elimination of the reservoir and restoration of natural flow or water temperature conditions, would allow natural control of many invasive species. On the other hand, if invaders are adapted to lotic waters, the decision on the intervention on the dam may be more difficult to take.

3. Diet

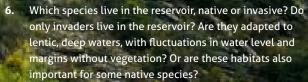
Another important issue is the **type of diet of the invasive species**, mainly if they are piscivorous or not. If invasive species are piscivorous, it is most likely to affect some endemism. For example, Iberian fish, from the evolutionary point of view, have developed with an almost total absence of predatory fish, for this reason they are very vulnerable to the presence of invasive piscivorous species.

4. Migration needs

Finally, the migratory needs of native species and invasive species are fundamental to make a decision. For example, the migratory requirements of the Iberian ichthyofauna are diverse, although a good part of them need to move to complete their biological cycles. It is very important to assess the migratory needs of the whole fish community of a basin as a whole before considering the possibility of removing an obstacle.

In order to make a sound decision, these four elements need to be determined. The following list of questions will help assess your situation.

2. Assessing the situation through a list of questions on species and catchments


This series of questions contains criteria for assessing the removal of a dam. The questions will help decision-making on restoration of fluvial connectivity considering the risk of expansion of invasive alien species. The questions in 'bold' refer to the important issues described in chapter 1.

- 1. What is the degree of threat of the native species that are intended to be conserved? Are the species endemic?
- What are the main threat factors? Think of: fluvial fragmentation, invasive species, habitat loss, climate change, etc.
- 3. What are the migratory requirements of the native species? Are they diadromous species, or potadromous with strong or low migratory, sedentary or euryhaline needs?
- **4.** What is the importance of metapopulations of the native species?
- Does the viability of the populations of native species depend on the colonization of new river stretches and the dispersion of specimens between these metapopulations? Will isolation cause its disappearance in the medium or long term?
- 5. What is the location of the invasive species? Are they upstream of the dam or in the reservoir itself, or downstream?

-> The list continues on p. 8.

"It is fundamental to assess the migratory needs of the whole fish community of a basin before considering the possibility of removing an obstacle."

- 7. Does the reservoir have a potential ecological value as a refuge for native species? Would the lentic waters of the reservoir help to preserve endemic populations of threatened fish in the face of the situation of scarcity of precipitations due to climate change?
- 8. What are the migratory requirements of invasive species?
- 9. What kind of trophic interactions exist between invasive and native species? Are the invaders piscivorous predators? Do they compete for the same food, space and shelter?
- 10. What kind of reproductive interactions exist between invasive and native species? Is there a sexual competence on the part of the invasive species that causes hybrids or genetic contamination with native fish populations?
- **11.** Are invasive species carriers of diseases or parasites that can be transmitted and affect native species?
- 12. How could the restoration of natural flow affect native and invasive species? Would the restoration of the natural flow, the temperature of the water and the concentration of dissolved oxygen favour native and/or invasive species?
- 13. Do invasive species present bioaccumulable toxic substances, or would the barrier removal favour the mobility of some types of pollutants in the upstream or downstream direction?

- 14. After a potential dam removal, would river continuity be favoured throughout the basin? Would the elimination of the dam greatly favour connectivity in the basin or would its contribution be limited? Dams generate a synergistic effect where the effect of two or more dams is higher than the sum of their individual effects. Is there a cumulative impact of river fragmentation with other obstacles?
- 15. Faced with the impossibility of removing the obstacle, what alternatives to recover connectivity and/or restore the natural flow regime exist? Is it possible to carry out improvement works on the obstacle such as ramps, ladders, height reduction, elimination of the reservoir, etc. without favouring the expansion of invasive species?
- 16. What other complementary measures are going to be adopted? Think of: the use of piscicides against invaders, habitat restoration, direct elimination or control of invaders, translocations between isolated native metapopulations, etc.
- 17. Are other threatened species affected, other than fish? In the case of the Iberian Peninsula, examples are the presence of species of *Margaritifera* sp. or of the autochthonous crayfish.
- **18.** Are other invasive species, other than fish, present? For example, species of terrapins, crayfish and other invertebrates such as snails or bivalves.
- **19.** Could the reservoir be a focus of attraction for new invasive species?

3. Decision table to weigh the decision on keeping or removing a dam

The decision table below helps to assess the issues regarding invasive and native species in your situation and compares the criteria for keeping or removing a barrier or dam presented in the previous sections.

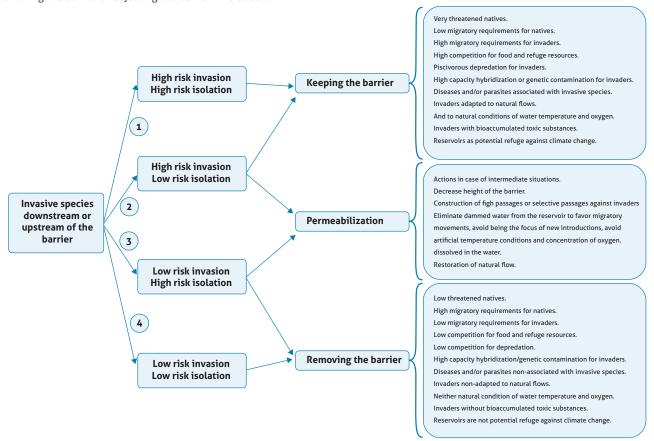
Table 1. General criteria in favour of removing or keeping a barrier or dam in a river. The most decisive criteria are in 'bold'.

Question?	Check	Remove the dam	Keep the dam	Check
What is the degree of threat of the native species?		Natives little threatened upstream or highly threatened downstream	Natives highly threatened upstream or little threatened downstream	
What are the migratory requirements of native species		High migratory requirements	Low or no migration requirements	
What is the importance of metapopulations of native species?		High isolation. High need of contact or genetic flow.	Low isolation. Low need of contact or genetic flow.	
Where are the invasive fish species?		Upstream	Downstream	
What are the migratory requirements of invasive species?		Low migratory requirements	High migratory requirements	
What kind of trophic interactions exist between invasive and native species?		Low competition for food resources, space and/or refuge between native and invasive species	High competition for food resources, space and/or refuge between native and invasive species	
What kind of predation interactions exist between invasive and native species?		Invaders low or no predation on eggs, juveniles and/or adults of native fish species	Invaders high predation on eggs, juveniles and/or adults of native fish species	
What kind of reproductive interactions exist between invasive and native species?		Invaders with low hybridization capacity or genetic contamination	Invaders with high capacity for hybridization or genetic contamination	
		Invaders with low sexual competence	Invaders with high sexual competence	
Are invasive species carriers of diseases or parasites?		No diseases or parasites associated with invasive species	Presence of diseases and/or parasites associated with invasive species	
How does the recovery of natural conditions affect invasive species?		Invaders not adapted to natural flows	Invaders adapted to natural flows	
		invaders not adapted to natural conditions of water temperature and oxygen	Invaders adapted to natural conditions of water temperature and oxygen	
Are there toxic substances in the reservoir? or Do invasive species present bioaccumulable toxic substances?		No toxic substances in the reservoir neither Invaders transport bioaccumulated toxic substances	Toxic substances in the reservoir or invaders transport bioaccumulated toxic substances	
Does the reservoir have a potential ecological value as a refuge for native species under drought conditions?		The lentic waters of the reservoir cannot preserve populations of threatened endemic fish against climate change	Reservoir can preserve populations of threatened endemic fish against climate change	
Does the removal of the dam significantly increase connectivity in the basin?		The obstacle causes a high synergic effect and its elimination would be very beneficial for the entire basin	There are no synergistic effects or obvious benefits	
Faced with the impossibility of removing the obstacle, what options to recover connectivity and/or restoration of natural flow exist?		No possibility of improvements in the passage of the obstacle	It is possible to improve connectivity and to safeguard a necessary isolation	
Faced with the impossibility of removing the obstacle, what options to recover connectivity and/or restoration of natural flow exist?		No possibility of improvements in the passage of the obstacle	It is possible to improve connectivity and to safeguard a necessary isolation	
Are other, non-fish, invasive species present?		No risk of expansion of other, non-fish, invasive species	Risk of expansion of other invasive species	
Are other, non-fish, threatened species affected?		It favours other highly threatened, non-fish, native aquatic species	It harms other highly threatened native aquatic species	
What other complementary measures are going to be adopted?		Habitat restoration, control of invaders, translocations between isolated native metapopulations, etc.	None	
Is the reservoir a focus of attraction for new introductions?		Yes	No	
Total checks		Checks in favour to remove	Checks in favour to keep	

The next chapter will go one step further in the evaluation of possible actions. It provides a method to assess an additional possibility: to adjust the barrier to improve its permeabilization.

4. Determining actions based on the invasion-isolation trade-off

When water managers try to address the problems of river fragmentation and invasive species, they are often faced with the trade-off, that managing ecosystems to address one problem precludes solving the other (Fausch et al. (2009)): on the one hand, habitat fragmentation isolates populations and increases their risk of extinction, and the solution may be to improve hydrological connectivity between river fragments; on the other hand, connectivity increases the risk of expansion of invasive species, so it may be decided to isolate those habitats.


In a fragmented river, there may be a certain degree of invasion threat from alien species and a certain degree of isolation of native species. Fausch et al. (2009) describes four (theoretical) situations categorized by degree of invasion and isolation:

- 1. High risk of isolation and high risk of invasion
- 2. Low risk of isolation and high risk of invasion
- 3. High risk of isolation and low risk of invasion
- 4. Low risk of low isolation and low risk of invasion.

While in practice it may be challenging to determine the exact degree of threat and isolation, this model allows to make a decision on the most suitable action strategy: keeping the barrier, removing the barrier or adjusting the barrier. The decision

flowchart below is based on the four situations pointed out by Fausch et al. (2009) (number 1-4) and can assist in the decision-making.

Improving the permeabilization of an obstacle may require the construction of selective fish passages. Note that information on the requirements for such structures to suit behavioural characteristics of certain fish species attempting to pass the barrier, may be lacking. This is the case for most Iberian species.

Fausch, K.D., Rieman, B.E., Dunham, J.B., Young, M.K. & Peterson, D.P. 2009. Invasion versus isolation: trade-offs in managing native salmonids with barriers to upstream movement. Conservation Biology, 23:

Full report

This document attempts to serve as a guidance to make the recovery of river connectivity in Europe compatible with the conservation of biodiversity. The guidance is based on the study and collection of best practices set out in the <u>report</u> by David Miguélez Carbajo (2017) 'Criteria for decision-making towards the improvement of river connectivity and dam removal considering the impacts of invasive fish species in the Iberian Peninsula.'

We highly recommend to read the full report for a more comprehensive analysis of fluvial connectivity and the expansion of invasive alien species, with special reference to the situation in the Iberian Peninsula; a compilation of main papers and projects about connectivity versus invasive alien species; and the evaluation criteria and a manual of good practices to address recovery of the connectivity in Iberian rivers considering the presence of invasive alien species.

Contacts

Centro Ibérico De Restauración Fluvial Email: info@cirefluvial.com

Wetlands International – European Association Email: post@wetlands.org

Stay in touch

Wetlands International European Association P.O. Box 471 6700 AL Wageningen, The Netherlands Tel. +31 (0) 318 660 910 www.wetlands.org/europe post@wetlands.org **f** Wetlands International

@WetlandsEurope

in Wetlands International

This report was supported by the European Commission through LIFE NGO funding 'This publication reflects only the author's view. The contents of this report can in no way be taken to reflect the views of the European Commission'.

