Monitoring and evaluating fish connectivity : novel methods and experiences

©
Wetlands
INTERNATIONAL

SCIMABID ${ }_{\text {intervarace }}$

This webinar series was supported by the European Commission through LIFE NGO funding

Yann Abdallah - 22/01/2018
" Habitat fragmentation has been recognized for 30 years as one of the five major factors of biodiversity loss, along with pollution, overexploitation of natural resources, invasive species and climate change "

Fish are constantly moving to accomplish their various vital functions

Move needs change during life history (larva, fry, juvenile, adult)

Variability of move needs at varying time scales

Variability of move needs at scales of varying distances

We identify active moves that require energy consumption

and passive moves that consist of transport by the moving environment

Major categories of movement in fish

PASSIVE MOVES : transport, drift, dispersion

Forced transport downstream of part of the population
(floods)

Passive moves(by drift) between the spawning / emergence zone and the first growth habitats (larvae, fry)

ACTIVE MOVES

Periodic movements (daily)

Very different physical habitats

ACTIVE MOVES

Ontogenetic movements

Larva

Fry

Juvenile

Adult

Evolution of nutritional needs, dietary behavior and ecological / physiological / biological requirements during life

Habitat changes
Relation "height of water column / size of fish" in the same species

Webinar series

Why are fish moving ?

ACTIVE MOVES

Migrations
"Movements between two functional habitats occurring regularly during the life of the individual and affecting a large part of the population." Northcote, 1979

Synchronous and seasonal
movements
Double trajectories
for iteroparous
Gregarious mass movements
for semeleparous

A picture is better than a long speech, so...

䋨
about $\mathbf{7 0} \mathbf{0 0 0}$ dams identified in France

Thousands of kilometers of recalibrated rivers

Why talk about fish continuity problems?
And the result is...

many vulnerable species even in danger of extinction

22/01/2018

Dam removal

In all cases, these interventions require the acquisition of knowledge, whether before, at the diagnostic stage, or after, at the evaluation stage

Spatial scale
type of project

Technical skills
Type of dam

Species
Biological stage
Time scale
Biological stage

Budget
Type of environnement
Stage of the project

Which tool for which information ?

Some good truths to remember ;-)

« The greater the migratory determinism, the more the dam is impassable and the easier it is to highlight the biological gains »

... in some cases, the gains are difficult to highlight
Importance of having robust initial assessment

Choose the right spatial scale
: watershed, subbasin, river, dam

Favor multi-year approach to smooth defragmentation effects, natural variations of populations and hydroclimatic extremes

VIDEO-COUNTING SYSTEMS

Lateral underground viewing room

Qualitative or quantitative approach Reliability proven by 20 years of use Optimal solution to study migration needs for many species Good communication / sensibilisation tool

Principal tool limit = turbidity
Hydraulic constraints + civil engeneering
Maintenance (windows, backlighting)
Cost of installation
Cost of the counting
Tool with little evolution over time
Reserved for strong issues and big fishways

VIDEO-COUNTING SYSTEMS

Removable systems

VIDEO-COUNTING SYSTEMS

Removable systems

PASSIVE TELEMETRY (RFID)

A robust tool for controlling the efficiency of fish passages

Efficiency = Number of individuals of a species that manage to cross the fishway versus the number of individuals who "try" to cross it (Bunt et al., 2012)

PASSIVE TELEMETRY (RFID)

Exemple:
$\mathrm{n}=12$ fish (theoretical population)

Webinar series

What tools to evaluate fish connectivity?

PASSIVE TELEMETRY (RFID)

Exemple:

$\mathrm{n}=12$ fish (theoretical population) $\mathrm{n}=10$ fish moving upstream

Webinar series

What tools to evaluate fish connectivity ?

Exemple:
$\mathrm{n}=12$ fish (theoretical population)

$$
\mathrm{n}=10 \text { fish moving upstream }
$$

$$
\mathrm{n}=8 \text { fish find the entrance }
$$

$$
\text { Attractivity = 80\% } \quad(=8 / 10)
$$

PASSIVE TELEMETRY (RFID)

Exemple:

$\mathrm{n}=12$ fish (theoretical population)
$n=10$ fish moving upstream
$\mathrm{n}=8$ fish find the entrance
$\mathrm{n}=6$ fish enter

$$
\begin{array}{ll}
\text { Attractivity }=80 \% & (=8 / 10) \\
\text { Accessibility }=75 \% & (=6 / 8)
\end{array}
$$

PASSIVE TELEMETRY (RFID)

Exemple:

$\mathrm{n}=12$ fish (theoretical population) $\mathrm{n}=10$ fish moving upstream
$\mathrm{n}=8$ fish find the entrance

$$
\begin{aligned}
& \mathrm{n}=6 \text { fish enter } \\
& \mathrm{n}=4 \text { fish come out }!
\end{aligned}
$$

Attractivity $=80 \%$	$(=8 / 10)$
Accessibility $=75 \% \quad(=6 / 8)$	
Passability $=67 \% \quad(=4 / 6)$	

PASSIVE TELEMETRY (RFID)

Exemple:

$\mathrm{n}=12$ fish (theoretical population)
$\mathrm{n}=10$ fish moving upstream
$\mathrm{n}=8$ fish find the entrance
Fishway efficiency = 40\%
$\mathrm{n}=6$ fish enter
$\mathrm{n}=4$ fish come out!

Attractivity $=80 \%$	$(=8 / 10)$
Accessibility $=75 \%$	$(=6 / 8)$
Passability $=67 \% \quad(=4 / 6)$	

PASSIVE TELEMETRY (RFID)

Attractivity Accessibility Passability
Fishway efficiency

PASSIVE TELEMETRY (RFID)

Passive mark (responds to an electromagnetic field)

- transponder lifetime = life time of the fish!
- weakly invasive = allows to mark fish of 5 cm
- a transponder = an alphanumeric code
- very accessible cost = between 2 and $3 € /$ transponder
- simple and rapid tagging (internal in peritoneal cavity)

PASSIVE TELEMETRY (RFID)

Diffusion of the electromagnetic field from fixed or portable (copper) antennas. High possibilities of adaptation to the sites

Variable detection distances (10 cm to 1 m) depending on:

- transponder size
- antennas (thickness, laying technique)
- environment (conductivity)

Data recorded in situ but possibility of remote transfer (GSM modem)

Antenna design within fish passages

Antenne circulaire sur tube en sortie d'un ascenseur à poissons

PASSIVE TELEMETRY (RFID)

Antenna design for rivers

PASSIVE TELEMETRY (RFID)

Antenna design for rivers

PASSIVE TELEMETRY (RFID)

Antenna design for rivers

PASSIVE TELEMETRY (RFID)
Antenna design for rivers

PASSIVE TELEMETRY (RFID)

Mobile antenna

PASSIVE TELEMETRY (RFID)

Mobile antenna

PASSIVE TELEMETRY (RFID)

Evaluation of the passability of the "Saut du Moine" fishpass on the Drac river (Isère basin)

Pools fishpass (15 pools)
4 slots / pool (2 upstream / 2 downstream) Species : trout, sculpin, barbel

RFID system with 8 antenna :

4 antenna at fishpass entrance

- 4 antenna at fishpass exit

1 « marker tag » (test tag) per antenna

Fine reading of behaviors Evaluation of the probabilities of non-detection

A lot of data generated !

What tools to evaluate fish connectivity?

PASSIVE TELEMETRY (RFID)

Evaluation of the passability of the "Saut du Moine" fishpass on the Drac river (Isère basin) FISH TAGGING - 5 electric fishing

HEALING

PASSIVE TELEMETRY (RFID)

Evaluation of the passability of the "Saut du Moine" fishpass on the Drac river (Isère basin)
FISH TAGGING - 5 electric fishing

634 fish tagged
Mostly trout and barbel
24% of fish tagged $<10 \mathrm{~cm}$

Tagging date	BAF	BLN	CHA	CHE	TRF	Total général
14/05/2014	5	20	24	15	36	100
24/06/2014	10	2	21	3	25	$\square 61$
29/09/2014	22	21	10	5	52	110
30/04/2015	19	9	29		65	122
03/08/2015	53	7	8	8	165	241
Total général	109	59	92	31	343	634
	17\%	9\%	14\%	6\%	54\%	

PASSIVE TELEMETRY (RFID)

PASSIVE TELEMETRY (RFID)

RESULTS - Fish tagged behavior patterns

Group	Criterion	Potential behavior pattern	Trout	Barbel
Group 1:	Fish tagged but never detected in the fish pass	- Non migrant - Dead - Did not find the fishpass entrance	76\%	56\%
Group 2:	Fish detected in the fishpass, without exceeding level $n^{\circ} 2$	- Non migrant (exploratory movements just before the entrance)	4\%	5\%

PASSIVE TELEMETRY (RFID)

RESULTS - Fish tagged behavior patterns
LTS - Fish tagged behavior patterns

| Group | Criterion | Potential behavior pattern | Trout | Barbel |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Group 1: | Fish tagged but never
 detected in the fish pass | $-\quad$Non migrant
 Dead
 Did not find the fishpass entrance | 76% | 56% |
| Group 2: | Fish detected in the fishpass,
 without exceeding level $n^{\circ} 2$ | Non migrant (exploratory movements just before the
 entrance) | 4% | 5% |
| Group 3: | Fish detected in the fishpass,
 without exceeding level $n^{\circ} 3$ | -Non migrant (exploratory movements just before the
 entrance)
 Migrant having failed to cross the fishpass | 4% | 5% |

entrance

PASSIVE TELEMETRY (RFID)

RESULTS - Fish tagged behavior patterns

Group	Criterion	Potential behavior pattern	Trout	Barbel
Group 1:	Fish tagged but never detected in the fish pass	$-\quad$Non migrant Dead Did not find the fishpass entrance	76%	56%
Group 2:	Fish detected in the fishpass, without exceeding level $n^{\circ} 2$	Non migrant (exploratory movements just before the entrance)	4%	5%
Group 3:	Fish detected in the fishpass, without exceeding level n 4	Non migrant (exploratory movements just before the entrance) Migrant having failed to cross the fishpass	4%	5%
Group 4:	Fish detected at level 4 but stayed in the fishpass	fish stuck upstream for behavioral or physical reasons (jams), Non migrant remaining in the fishpass	0.3%	2%

PASSIVE TELEMETRY (RFID)

PASSIVE TELEMETRY (RFID)

RESULTS - Global reports

Important to tagged a lot of fish (see diversity of behaviors)

All the tagged species were detected in the fishpass but very variable determinism
Barbel $=56$ \% non-migrant
during the study
Sculpin = 98% non-migrant
during the study
Significant passability of fish entering the fishpass
Trout $=80 \% \quad$ Barbel $=83 \% \quad$ Vairone $=40 \%$
Very short crossing times (70% in less than 1 hour)
All size classes represented (+ small $=90 \mathrm{~mm}$ trout)

GENETIC MARKERS

Characterize the genetic structuring of populations on a microgeographic scale

Evaluate gene flow between populations, in relation to the presence of dams It is therefore a well adapted tool for:

- Identify isolated / connected populations
- Monitor the effect of restoration actions on population fragmentation
- Determine the biological gains of actions
- Evaluate these gains over the long term

GENETIC MARKERS

Characterize the genetic structuring of populations on a microgeographic scale

Evaluate gene flow between populations, in relation to the presence of dams

Applies primarily to a watershed or sub-basin scale
Allows to evaluate several dams simultaneously
Requires field investigations to collect biological material
Costs related to genetic analyzes + limited interpretations

Webinar series

What tools to evaluate fish connectivity?

GENETIC MARKERS

Evaluation of the real effects of the fragmentation of the environment by dams on the genetic functioning of the brown trout populations of Méchet river (Saône-et-Loire)

Chute d'eau naturelle

Franchissabilité présumée: - Infranchissable
\diamond Franchissement partiel
\diamond Totalement franchissable

Context :

Project of defragmentation on the whole river (cf. EU Water Framework Directive)
2 dams particullary impacting
1 natural obstacle upstream

Objectifs:

Measure the impact of dams on gene flow Make an initial assessment before actions

Webinar series

What tools to evaluate fish connectivity?

GENETIC MARKERS

Evaluation of the real effects of the fragmentation of the environment by dams on the genetic functioning of the brown trout populations of Méchet river (Saône-et-Loire)

Methodology:

River Méchet divided into $\mathbf{7}$ sections +1 tributary section (Argentolle)

22 to 51 trouts sampled per station
Genotyping of each individual at the level of 14 microsatellites

What tools to evaluate fish connectivity?

GENETIC MARKERS

Evaluation of the real effects of the fragmentation of the environment by dams on the genetic functioning of the brown trout populations of Méchet river (Saône-et-Loire)

Methodology:

River Méchet divided into 7 sections
+1 tributary section (Argentolle)

22 to 51 trouts sampled per station
Genotyping of each individual at the level of 14 microsatellites

Genetic diversity within each station

Differentiation / genetic structure between stations

Webinar series

What tools to evaluate fish connectivity?

GENETIC MARKERS

Evaluation of the real effects of the fragmentation of the environment by dams on the genetic functioning of the brown trout populations of Méchet river (Saône-et-Loire)

Results:

Homogenous distribution of genotypes within of the 6 most downstream stations

Brutal change to the right of the natural fall

Webinar series

What tools to evaluate fish connectivity ?

GENETIC MARKERS

Evaluation of the real effects of the fragmentation of the environment by dams on the genetic functioning of the brown trout populations of Méchet river (Saône-et-Loire)

Results:

Highly isolated population upstream (no gene flow downstream)

Intermediate population (Méchet 6) with influences from both the isolated upstream population and the downstream population

What tools to evaluate fish connectivity?

GENETIC MARKERS

Evaluation of the real effects of the fragmentation of the environment by dams on the genetic functioning of the brown trout populations of Méchet river (Saône-et-Loire)

Results:

No genetic structuring due to the presence of the dams. Existence of significant gene flow between the stations.

Need to complete the evaluation with complementary approaches (habitats, thermie, ...)

Webinar series

What tools to evaluate fish connectivity?

GENETIC MARKERS

Use of genetic markers to study the influence of obstacles and their equipment / removal on the movements of trouts population of Yzeron river (Rhône)
(1) Bassin de l'Yzeron $\frac{\sqrt{1 /-9}}{\text { PÊCHE }}$

Contexte:

A multi-year intervention program (2008-2014) on many dams

Need to evaluate the effectiveness of actions but difficulty to work dam by dam

Possibility of achieving an initial assessment on certain sectors. Before / after approach

Webinar series

What tools to evaluate fish connectivity ?

GENETIC MARKERS

Use of genetic markers to study the influence of obstacles and their equipment / removal on the movements of trouts population of Yzeron river (Rhône)
(1)Bassin de l'Yzeron

Webinar series

What tools to evaluate fish connectivity ?

GENETIC MARKERS

Use of genetic markers to study the influence of obstacles and their equipment / removal on the movements of trouts population of Yzeron river (Rhône)
(1)Bassin de l'Yzeron

GENETIC MARKERS

Use of genetic markers to study the influence of obstacles and their equipment / removal on the movements of trouts population of Yzeron river (Rhône)

Results:

Site 1 = poorly diversified population. Characteristic of a founder effect and / or geographical isolation. No exchange or gene additions to pop. downstream

Site $\mathbf{5}$ = also suffers from geographic isolation with low gene flow from downstream

GENETIC MARKERS

Use of genetic markers to study the influence of obstacles and their equipment / removal on the movements of trouts population of Yzeron river (Rhône)

Results:

Sites 14 and 16 = tendency to isolation. No movement of trouts from these stations to others located on the main river

Sites 4 to 9 (8) = maintenance of genetic diversity by downstream migration

GENETIC MARKERS

Use of genetic markers to study the influence of obstacles and their equipment / removal on the movements of trouts population of Yzeron river (Rhône)

Results:

Movements of trouts took place between the various dams equiped or erased

Most significant result on the Yzeron axis (site 8) and a small tributary (site 5)

Several sites still show signs of isolation (sites 2, 3, 14 and 15)

Webinar series

What tools to evaluate fish connectivity ?

GENETIC MARKERS

Use of genetic markers to study the influence of obstacles and their equipment / removal on the movements of trouts population of Yzeron river (Rhône)

Results:

Several sites still show signs of isolation Special case (sites 2 and 3) = unrestored fish continuity despite construction of a fishway

Webinar series

What tools to evaluate fish connectivity?

GENETIC MARKERS

Use of genetic markers to study the influence of obstacles and their equipment / removal on the movements of trouts population of Yzeron river (Rhône)

Identification of still isolated populations

Allows you to target the dams to be treated first
fish connectivity is important for all species of fish, but needs are expressed at different scales of time and space

Programming and performing effective actions therefore require knowledge based on robust data

Any action aimed at restoring fish continuity should ideally include a diagnostic prior to intervention and an ex post evaluation
wide range of tools at our disposal

Many knowledge to acquire
 Many tools

Which tool for which information ?

	Migration flows
Tools	Trapping Video-counting
Advantages	All species, all stages (low selictivity) Relation with data monitoring
Disadvantages	No idea of real fishway efficiency Time consuming (automatisation ?) Limited to the dam scale
	(ime\|

Efficiency / Passability
Passive telemetry Active telemetry Search for passageways(RFID) Individuals trajectories (radio/acoustic) Tagging (number ?) Cost of tags (radio/acoustic) Selectivity (size, species) Animal welfare laws

Gene flow
Genetic tools (DNA microsatellites, SNPs)
Down/upstream comparison Comparison with natural sites Viabilty, Fonctionnality of pop. Watershed vision
Development of specific marker sets (cost) Technicity

Thank you for your attention

Yann ABDALLAH
SCIMABIO Interface
+33 (0)6 72562136
y.abdallah@scimabio-interface.fr
www.scimabio-interface.fr
https://www.facebook.com/scimabio.interface/

